
Copyright©2013,kaikeba.com

All Rights Reserved

—— this引用

主讲教师：耿宇航

编程入门基础

this引用

Copyright©2013,kaikeba.com, All Rights Reserved

• this就是正在执行本方法的当前对象的指针

• 方法的执行依赖于对象

this的要点

Copyright©2013,kaikeba.com, All Rights Reserved

• this是形参变量
– this的生命期很短：从方法调用到结束

– 同一方法的两次调用，this是不同的变量，其值可能相同或
不同

• this是引用类型的变量
– this的值与调用时的实参变量相同

• a.f(x)
– 则，a为实参（引用类型）

– this为形参（引用类型）

– 当 f 执行的时候，this与a指向了同一个对象

到底什么是方法？

Copyright©2013,kaikeba.com, All Rights Reserved

• 方法的描述是公共的

– 方法的描述语句是公共的，不是特定到某一个具体的对象

• 方法的执行是特定的

– 方法一旦执行，总是特定到某个具体的对象

– 除非……

对象的内存图景

Copyright©2013,kaikeba.com, All Rights Reserved

class Age

{

 private int n;

 public Age() { n=1;}

 public void grow() { n++;}

 public int get() { return n;}

}
Age a = new Age();

a.grow();

Age b = new Age();

b.grow();

Age c = new Age();

c.grow();

c.grow();

对象的内存图景

Copyright©2013,kaikeba.com, All Rights Reserved

所有对象公用的方法

Age.grow(Age this)

{

 this.n ++;

}

int Age.get(Age this)

{

 return this.n;

}

Age.Age(Age this){

 this.n = 1 }

int n

Age a

int n

Age b

int n

Age c

变量的生存期

Copyright©2013,kaikeba.com, All Rights Reserved

• class A

• {
– private int x;

– public void f(){ x++; }

• }

• 上面的x并非永存！只有在new A() 的时候，x才跟随对象出生！

• 当创建多个对象的时候，x会存在多个实例

• f 方法中 x 从哪里来？实质是 this.x++
– 而this是从f方法的参数列表中传来的（被语法上隐藏了）

– 实际：public void f(A this) { this.x++; }

Copyright©2013,kaikeba.com, All Rights Reserved

谢 谢 !

